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ABSTRACT

This paper presents a comprehensive case study on the mass de-
ployment of an Al-driven platform for chiller energy optimization
in chiller plants. It discusses the development and implementation
of a scalable approach, emphasizing the significance of utilizing
a semantic format for data representation and storage. The paper
also addresses the process of selecting an appropriate Al model
for chiller energy optimization and presents the results and perfor-
mance metrics achieved through the platform’s implementation.
This case study serves as a valuable reference for organizations
seeking to deploy Al-based energy optimization solutions in chiller
plants at scale.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; « The-
ory of computation — Semantics and reasoning; Machine
learning theory; Data integration.
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1 INTRODUCTION

Climate change poses a global challenge, with human activities
contributing to increased global warming and more frequent ex-
treme weather events. Hong Kong is not immune to these effects,
experiencing rising temperatures, a decrease in cold days, and more
frequent heavy rainfall. To address these issues, the Government
of the Hong Kong Special Administrative Region (HKSAR) of the
People’s Republic of China has established the Hong Kong Climate
Action Plan 2050, which sets ambitious targets and strategies for
decarbonization. One of the key targets is to reduce electricity con-
sumption in commercial buildings by 30% to 40% and in residential
buildings by 20% to 30% by 2050 [7]. Based on the Hong Kong
Energy End-use Data for 2022, air conditioning emerged as a signif-
icant consumer of electricity, accounting for approximately 48,000
Terajoules [6]. The building industry is actively researching and im-
plementing energy-saving measures, including chiller optimization,
to align with the goals of reducing energy consumption.

The Electrical and Mechanical Services Department (EMSD)
plays a crucial role in continuously improving energy efficiency
standards and exploring innovative technologies. Leveraging arti-
ficial intelligence (AI) technology, the industry is exploring smart
energy management solutions to optimize chiller plant operations
and enhance energy efficiency in air conditioning design. Success-
ful studies have demonstrated the potential and feasibility of this
Al-driven application. Some of them gives more than 10% energy
saving even for real data testing [2, 5, 8, 20].

However, little research has been done on the overall framework
for digitizing an existing building for online data collection and Al
model deployment in a chiller system. Additionally, existing studies
mainly focus on developing specific models for individual buildings
only [17]. The redeployment of one model from one building to
another may not be directly transferable and compatible.

This paper presents the proposed methodologies for effective
data acquisition, transmission, and storage, ensuring the availabil-
ity of high-quality data for analysis and optimization purposes to
facilitate the mass deployment of Al-driven Chiller Energy Opti-
mization in Hong Kong. The paper emphasizes the significance
of utilizing a semantic format for data representation and storage,
enabling streamlined analysis and integration of Al algorithms and
machine learning models. Furthermore, the paper addresses the
crucial process of selecting an appropriate AI model for chiller en-
ergy optimization. It explores the tools and techniques that assist
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in identifying the most suitable model for different building types
and applications.

2 DATA COLLECTION AND PREPARATION

Hong Kong has over 42,000 existing buildings, including industrial,
domestic, commercial, private, and public buildings. The govern-
ment owns over 8,000 buildings and facilities and is currently col-
lecting over 600,000 data points per day per building to understand
the performance of building services systems. To handle the large
volume of data, the EMSD has established a framework for data
collection.

2.1 Defining the standard format

To enable the mass deployment of chiller optimization, a standard-
ized data type and format (Table 1)are required for all venues. The
EMSD has set up an Integrated Building Managed System (iBMS)
guideline that stipulates the minimal data points required for the
Electrical, Mechanical, and Building Service (EMABS) System, in-
cluding the Chiller system. The guideline outlines the data sampling
frequency of every 15 minutes and the use of trend log function for
data recording.

2.2 External Weather Data

The Hong Kong Observatory (HKO) operates over 50 Automatic
Weather Stations across all districts in Hong Kong, providing mete-
orological data. This instant and historical weather data is available
to the public and can be accessed via an Application Programming
Interface (API). For chiller load prediction purposes, the following
weather data (Table 2) is acquired from HKO for further study [8].

Table 2: Weather Data from HKO

Weather Data Example Data Format
Temperature (Celsius) 10.0 Real
Humidity (%) 64.8 Real
UV Index 0.5 Real
Rainfall (mm) 1.0 Real

2.3 Data collection infrastructure

Sensor data is collected locally on-site and stored in the Integrated
Building Management System (iBMS) for local control and monitor-
ing. The Regional Digital Control Centre (RDCC) consolidates the
data from all buildings for central review, benchmarking, and data
analysis. The RDCC utilizes Al to analyze the collected data for
predictive maintenance, plant optimization, and energy efficiency.
The dataflow is illustrated in the flow chart below (Figure 1).

2.4 Data Processing

Data processing is a crucial step that precedes data exploration
and prediction in any data-driven analysis or modeling task. Raw
data often requires preprocessing and transformation to ensure its
quality, consistency, and compatibility with the analysis techniques
employed. With domain knowledge, data cleansing and feature
extraction are carried out. The major data processing steps are
detailed in the Table 3 below.
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Table 1: Standard Parameters for Chillers

System Parameter Data format Data Objectives

Oft/On Status Boolean O&M
Auto/Manual Status Enumerated O&M
Trip/Fault Alarm Boolean O&M
Running Hour Real O&M, M&V
Running Amps Real O&M, M&V
Running Line Voltage  Real O&M, M&V
Refrigerant Discharge Real O&M, M&V
Pressure

Refrigerant Suction Real O&M, M&V
Pressure

Compressor Off/On Sta- Boolean O&M, M&V
tus

Chilled Water Supply Real O&M, M&V
Water Temperature

Chilled Water Return Real O&M, M&V
Water Temperature

Chilled Water Flow Real O&M, M&V
Rate

Flow Switch Status Boolean O&M
Motorized value status  Real 0&M

Low Evaporating Pres- Boolean O&M

sure Cut-out

High Condensing Pres- Boolean O&M

sure Cut-out

Suction Air Tempera- Real O&M, M&V
ture (Condenser)

Discharge Air Tempera- Real O&M, M&V
ture (Condenser)

COP for Chiller & Real O&M, M&V
Chiller Plant

COP for Plant Real O&M, M&V

Remarks: O&M ~ Operation and Maintenance;

M&V - Measurement and Verification

RDCC

iBMS Server

03 Fire Services BACnet / IP Services
04 Ligh Data Services
Web Services

® TOL AlPlatform
&2 Big Data Platform
F Data Lake

Figure 1: Data Collection Flow Chart

2.5 Semantic Artificial Intelligent

The adoption of artificial intelligence techniques in EMABS system
and data analytics presents significant challenges due to the dis-
tinct knowledge and experience required in each domain. Optimiz-
ing control of complex EMABS systems necessitates aligning and
standardizing knowledge across domains. However, a fundamental
hurdle is the lack of well-structured and consistent identification
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Table 3: Purpose and Details of the Data Processing

Process

Purpose and Details

Resampling
Data Type Conversion
Remove Negative Value

Interpolation
Feature Combination

Feature Aggregation

Feature Extraction

Resample data into hourly timeframe. (E.g., Cooling Load, Tem-
perature, etc.)

Convert datatype to float / integer for calculation and model
prediction purpose.

Remove Negative Value for engineering parameters (E.g., En-
ergy Consumption).

Unify timestamp info for all setpoints, avoid missing timestamp.
Combining two or more existing features to create a new one
(E.g., Calculate Wet bulb by Temperature & Humidity).
Aggregating features to create a new one (E.g., Chiller Sequence
Column by counting On Off Status of chillers).

Extract different datetime information (E.g., Month, Year and
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Holiday from timestamp).

and classification of equipment. Building systems often have disor-
ganized naming structures, leading to confusion and integration
issues. Standardizing data naming and representations is crucial
to address these concerns. Capturing entity properties and rela-
tionships throughout the asset lifecycle is also essential. Without
unified semantic representation, understanding interrelated data
requires extensive expertise. This poses difficulties for widespread
Al deployment across buildings.

To unlock the potential of big data and Al in the E&M industry
for mass deployment, the Semantic Al approach is recommended.
Semantic model is an ontology-based framework following the Re-
source Description Framework (RDF) and Web Ontology Language
(OWL) from World Wide Web Consortium (W3C) [17]. This ontol-
ogy combines methodologies from Machine Learning, Knowledge
Graph Modeling, Natural Language Processing, and Text Mining.
Unlike traditional approaches, Semantic Al introduces a separate
layer that enables the creation of Al models based on the semantic
relationships among different equipment. By utilizing a unified
semantic model that encapsulates various subsystems within a
building, it becomes possible to programmatically explore the op-
erational, structural, and functional aspects of the building. This
approach can be extended for application in other buildings, facili-
tating the widespread adoption of Al-driven solutions. A semantic
data platform, consisting of a graph database for storing the seman-
tic model and a time-series database for building data, is utilized
(Figure 2). The building data associated with the semantic model in-
stance is ingested into a time series database. Entities in the instance
can be reached through an application programming interface (API)
for semantic path queries. Data queries can be formed by the se-
mantic data platform to retrieve the time series data linked to the
entity. This enables different domain experts to perform analytics
and diagnostics separately, making the programs of the Al services
portable across buildings in a shorter timeframe.

Figure 2: Architecture Overview of Semantic Data Platform
and Partial View of a Water-Cooled Chiller System
at A Government Building

Other building applications, like Building Information Model
(BIM), can access the open and portable building data using our
Al semantic model approach. This allows application developers
to directly deploy their existing solutions, based on AI models
developed for a similar building, in a new building. This approach
significantly reduces time and cost for model development and data
analytics. See the illustration below (Figure 3) for the Semantic
Model integrated with the BIM model for daily Operation and
Maintenance.

Figure 3: Comprehensive Semantic Model and Partial View
of the Chiller System with Integration with BIM
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The overall flow chart for creating the semantic file proposed is
shown in the following graph (Figure4).

Figure 4: Flow Chart of Creating Master Table and the Se-
mantic File

3 DATA EXPLORATION

Data exploration plays a pivotal role in comprehending and analyz-
ing intricate systems. The primary objective is to visually represent
and analyze current plant information in order to identify abnor-
malities prior to the application of Al algorithms for load prediction.
By utilizing a diverse range of visualization tools and techniques,
engineers can acquire valuable insights into the behavior and per-
formance of the system, thereby facilitating proactive measures
and enhancing overall system efficiency.

One of the key visualizations used in this framework is the
heat map, which illustrates the cooling load of individual chillers
across different hours of the day and months throughout the year
(Figure 5). This visualization enables the identification of patterns
and variations in cooling load, aiding in the detection of abnormal
behavior or inefficiencies during specific time periods. Additionally,
by comparing the heat maps of all the chillers within the same site,
engineers can observe if there is any overloading or imbalanced
load distribution among the chillers.

Figure 5: Individual Cooling Load by Data and Time and Total
Chiller Plant Cooling Load

A box graph is employed to represent the monthly total system
cooling load across the year. This visualization helps identify sea-
sonal trends and variations in the cooling load, providing insights
into the system's performance under different climatic conditions.

Analyzing the performance curves of chillers is crucial for eval-
uating efficiency across temperature ranges and part load ratios
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(Figure 6). Research has shown that over half of the energy is con-
sumed at the low Part Load Ratio (PLR) range [13]. This analysis
helps identify deviations and optimize energy consumption. By
considering each chiller's performance characteristics and select-
ing the most efficient ones, engineers can enhance overall chiller
system efficiency and achieve optimal energy utilization.

Figure 6: Chiller Performance Curve against Part Load Ratio
under Different Wet Bulb Temperature Range

4 CHILLER LOAD PREDICTION AND
SEQUENCE OPTIMIZATION

4.1 Model Selection

In chiller load prediction, different algorithms have been tested and
found applicable. However, prediction accuracy can vary depending
on factors like location, building type, and chiller system charac-
teristics. It can be observed that there are several main directions
for model selection. Some of them adopt Artificial Neural Network
(ANN) [9-12, 14], while other techniques include Support Vector
Machine (SVM) [3] and Extreme Gradient Boosting (XGBoost) [18].
When deploying at scale, with diverse building variations, it is rec-
ommended to test multiple algorithms and select the best model
before fine-tuning. The traditional approach to chiller load predic-
tion involves manual testing of each model or adopting a previous
one. However, this approach is time-consuming and inefficient for
mass deployment in diverse buildings. To address this challenge, a
new approach has been adopted, leveraging online Al tools that en-
able a quick and efficient evaluation of multiple algorithms (Figure
7). These tools provide a platform for a brief trial of different algo-
rithms, allowing for a comparative analysis of their performance.
By utilizing these online Al tools, the process of algorithm selection
and tuning can be streamlined, facilitating the mass deployment of
chiller load prediction models.

g

Figure 7: Relationship Map and Metric Chart of the Online
Al Tool Running the Chiller Load and COP Prediction

The analysis of the results reveals that the top three performing
algorithms for chiller load prediction are all variants of XGBoost
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with delete enhancement [18]. And the RMSE values are 32.619,
34.023, and 34.023, respectively. XGBoost is a popular Machine
Learning (ML) algorithm with relative low programming complex-
ity when comparing to Deep Learning algorithm. It provides faster
training speed and more robust to noise and missing data and hence
more suitable for mass deployment case. As a result, the XGBoost
models are exported as plain code to undergo further fine-tuning
and development for real-world application scenarios. This process
allows for a more detailed optimization of the models to ensure
their effectiveness and accuracy in practical use cases.

4.2 Model Training

The tool aids in selecting the most suitable algorithm for two
key tasks: (i) cooling load prediction and (ii) Coefficient of Per-
formance (COP) prediction. The next step involves training and
fine-tuning hyperparameters to improve prediction accuracy. Dif-
ferent approaches like manual tuning, grid search, random search,
and Bayesian optimization can be used. For the XGBoost algorithm
with 12 hyperparameters, an automated framework performs an
exhaustive search for optimal settings in each specific case. The
Table 4 below provides a comprehensive overview and detailed
explanations of hyperparameter settings.

The Tree-Structured Parzen Estimator method is used in hy-
perparameter tuning. It selects the parameter with the highest
expected improvement, sorts them by scores, and divides them into
two Parzen Estimators for further enhancements. Evaluating the
performance of hyperparameter tuning involves training the loss
function and striving for minimal of RMSE and MAE.

Figure 8: Predicted Cooling Load against Actual Cooling Load
and the Feature Importance

The chiller cooling load is accurately predicted using the trained
and tuned XGBoost model (Figure 8). Additionally, feature impor-
tance analysis reveals that the most influential feature is the hour
of the day, followed by average outdoor temperature, humidity, and
the day of the week. These findings align with the domain under-
standing of chiller load variation, highlighting the significance of
temporal factors and environmental conditions in determining the
cooling load requirements. After prediction, the suggested chiller
sequence is calculated, considering higher plant COP and the low-
est total energy consumption. The statistical data are listed in the
Table 5.

Based on the available information, the system will provide
recommendations for the optimal high-level chiller sequence and
control settings. The red area depicted in Figure 9 illustrates the
maximum energy savings that can be attained by adopting these
suggested settings. However, it is important to note that in real-life
implementation, the actual energy savings may be slightly lower.
This discrepancy arises from the presence of control constraints that
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Table 4: Hyperparameter Setting

Parameter Range Explanation

100, 2500, 100 Number of trees in the

forest.

Minimum sum of in-

stance weight (hessian)

needed in a child.

0.1, 1.0 Step size shrinkage
used in update to
prevents overfitting.

n_estimators

min_child_weight 1, 600, 1

learning_rate

subsample 0.1, 1.0 Subsample ratio of the
training instances.

eta 0.1, 1.0 Learning rate.

reg_alpha 0.1, 10.0 L1 regularization term
on weights.

reg_lambda 0.1, 10.0 L2 regularization term
on weights.

colsample_bytree 0.1, 1.0 Subsample ratio of
columns when con-
structing each tree.

max_depth 1, 600 Maximum depth of a
tree.

gamma 0.1, 10.0 Minimum loss reduc-

tion required to make
a further partition on a
leaf node of the tree.
Number of parallel
trees constructed dur-
ing each iteration.
Number of parallel
threads used to run
XGBoost.
100, 2500, 100 Number of trees in the
forest.

num_parallel_tree 1,50

nthread 1, 50

n_estimators

are put in place to ensure the protection and longevity of the chiller
system. These control constraints play a vital role in safeguarding
the reliability and performance of the chiller system in the long
run.

Figure 9: Energy Saving from Suggested Chiller Sequence
and Settings
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Table 5: Statistical Data of the Proposed Chiller Sequence
Chiller Sequence Average Standard Min Average 25% Average 50% Average 75% Average Max Average
COopP Deviation COP Cop COP Cop Cop
No.1 and No.3 4.63 0.31 3.82 4.50 4.63 4.83 5.52
No.2 and No.3 4.92 0.45 3.82 4.60 4.90 5.30 5.93

4.3 Model Validation

The model's training phase involves splitting historical data into
a 70% training set and a 30% evaluation set. After evaluation, a
validation stage is conducted using three days of unseen actual data
to test the model's performance in real-world scenarios. The Figure
illustrates the hourly profiles of the actual cooling load and the pre-
dicted cooling load during this validation stage. The results, shown
in the following Figure 10, demonstrate similar shapes between the
actual and predicted cooling load profiles.

Figure 10: Validation of the Prediction Model on 3-Day Un-
seen Data

After analyzing the results, it is evident that the Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) in the vali-
dation set are slightly higher compared to the training set (Table 6).
However, they still remain within an acceptable range. This signi-
fies that the model performs well and shows promise for real-world
deployment.

Table 6: Comparison of the Accuracy of Evaluation and Vali-
dation Data

Stage RMSE MAE
Evaluation 11.079 6.87
Validation 19.84 18.59

5 IMPLEMENTATION AND RESULTS

From the study, the approach was first implemented in Site A and
then expanded to Site B to test the expandability of the framework

for mass deployment of Al-based Chiller Energy Optimization. The
basic information of the sites is summarized in Table 7, with Site A
being a large Office Complex and Site B being a small Clinic and
Laboratory. The results have shown that the redeployment time
in Site B has significantly reduced with the standardized chiller
plant data format and infrastructure, consolidated database of local
weather data, cloud data cleansing, and analytics platform.

Table 7: Characteristic and Result of Two Tested Sites

Site A Site B
Usage Office Complex Clinic and Laboratory
Construction ~ 90,000 ~ 1,100
Floor Area
(sqm)
Type of chiller Water-cooled  Air-cooled
Primary system  Variable flow  Variable flow
No. of Chillers 5 3
Total Cooling ~ 17,500 ~ 450
Load (kW)
Possible Load ~13 ~ 5.5 for 3-day valida-
Saving (%) tion period
Deployment 11 5

time (Months)

6 CONCLUSION

In summary, this paper presents a comprehensive framework for the
mass deployment of Al algorithms in chiller energy optimization.
The framework encompasses standardized data formats, semantic
Al, data exploration, data cleansing, and efficient model selection
and tuning using market-available tools. By establishing standard-
ized data formats and collection infrastructure, consistency and
compatibility in data acquisition are ensured. The incorporation of
semantic Al enhances data understanding and utilization by lever-
aging domain knowledge and equipment relationships. Thorough
data exploration and cleansing techniques provide valuable insights
and maintain data accuracy. The streamlined approach to model
selection and tuning reduces redeployment time, enabling faster
implementation and energy-saving benefits.
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However, there are limitations and future considerations to ad-
dress. For existing buildings, the absence of sensors and data col-
lection infrastructure may impede deployment and necessitate ad-
ditional time. Moreover, the cost implications of installing new
sensors and infrastructure must be taken into account. Hence, it
is advisable to prioritize deploying this framework in buildings al-
ready equipped with sensors and infrastructure. Furthermore, while
this study encompassed two building types, specific usage buildings
like sports stadiums or museums may present unique challenges
warranting further investigation. Future work should concentrate
on addressing these specific building types and exploring potential
solutions for unforeseen issues.

Lastly, the use of a semantic model has shown promise in aiding
model training through domain knowledge and allowing better
transferability to different building types. Further study should
focus on the development of graphical-embedded techniques to
fully harness the additional information provided by the semantic
model. Meanwhile, another direction is to generalize and summarize
the types of Al models that should be adopted for different types
of buildings and chiller system configurations, based on obtaining
more cases.

In conclusion, this paper's framework establishes the ground-
work for widespread adoption of Al-driven Chiller Energy Opti-
mization in buildings. By addressing limitations and conducting
additional research, we can continue to improve energy efficiency
and sustainability, contributing to a greener future.
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